Optimized Mapping Spiking Neural Networks onto Network-on-Chip

Abstract

Mapping spiking neural networks (SNNs) onto network-on-chips (NoCs) is pivotal to fully utilize the hardware resources of dedicated multi-core processors (CMPs) for SNNs’ simulation. This paper presents such a mapping framework from the aspect of architecture evaluation. Under this framework, we present two strategies accordingly: The first tends to put highly communicating tasks together. The second is opposite, which aims at SNN features to achieve a balanced distribution of neurons according to their active degrees; for communication-intensive and unbalanced SNNs, this one can alleviate NoC congestion and improve the simulation speed more. This framework also contains a customized NoC simulator to evaluate mapping strategies. Results show that our strategies can achieve a higher simulation speed (up to 1.37 times), and energy consumptions can be reduced or rise very limited.

Publication
In International Conference on Algorithms and Architectures for Parallel Processing 2016
Weimin Zheng
Weimin Zheng
Professor